## Palladium-catalyzed Cascade Cyclization-Coupling Reaction of Benzyl Halides with N, N-Diallylbenzoylamide

## Yi Min HU, Yu ZHANG, Jian Lin HAN, Cheng Jian ZHU, Yi PAN\*,

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093

**Abstract:** A novel type of palladium-catalyzed cascade cyclization-coupling reaction has been found. Reaction of N, N-diallylbenzoylamide **1** with benzyl halides **2** afforded the corresponding dihydropyrroles **3** in moderate to excellent yields.

Keywords: Palladium, Heck reaction, benzyl halides, cyclization, cascade reaction.

Palladium catalyzed vinylation of benzyl halides is an important part of the Heck reaction<sup>1-3</sup>. We have conducted some studies on the reactions. Several interesting results have been obtained including discovery of the reaction of benzylic quanternary ammonium salts<sup>4</sup> and an unusual rearrangement of  $\alpha$ -chloromethylnaphthalene<sup>5</sup>. In the course of our continuing efforts in the study of palladium catalyzed reactions of benzylic compounds, we found that benzylic halides can react with 1, 6-dienes, in the presence of palladium catalyst, to form cyclic compounds *via* cascade coupling pathway. Reported herein is the reaction of N, N-diallylbenzoylamide 1 with benzyl halides (**2a-k**). Dihydropyrroles (**3a-k**) were obtained in moderate to excellent yields (**Scheme 1**).

Scheme 1 The typical experimental procedure



A mixture of N, N-diallylbenzoylamine (1 equiv), benzyl halide (1.1 equiv), tributylamine (1.2 equiv) and  $Pd(OAc)_2(1-2 \text{ mol}\%)$  were heated in DMF under nitrogen atmosphere. The reaction was completed in 15 hours at about 130°C as indicated by TLC monitor. The results are summarized in **Table 1.** All the products obtained are yellowish oil, which were isolated by flash column chromatography on silica gel. As indicated in **Table 1**, yields of the reactions were dependent on the

<sup>\*</sup>E-mail: yipan@nju.edu.cn

Yi Min HU et al.

substituents on the phenyl ring. The benzylic chlorides with eletrondonating substituents, such as methyl group in entries 2-4, led to smooth reaction and afforded higher yields. Strong electron-withdrawing group such as carboxylate (entry 9) and nitro group (entry 11) suppressed the reaction substantially.

| Entry | Х  | R                    | Product <sup>a</sup> | $\text{Yield}(\%)^{\text{b}}$ |
|-------|----|----------------------|----------------------|-------------------------------|
| 1     | Cl | Н                    | 3a                   | 88                            |
| 2     | Cl | p-CH <sub>3</sub>    | 3b                   | 82                            |
| 3     | Cl | o-CH <sub>3</sub>    | 3c                   | 79                            |
| 4     | Cl | m-CH <sub>3</sub>    | 3d                   | 74                            |
| 5     | Cl | o-Cl                 | 3e                   | 67                            |
| 6     | Cl | p-Cl                 | 3f                   | 69                            |
| 7     | Cl | o-CN                 | 3g                   | 56                            |
| 8     | Cl | p-Br                 | 3h                   | 61                            |
| 9     | Cl | m-COOCH <sub>3</sub> | 3i                   | 52                            |
| 10    | Br | Н                    | 3ј                   | 70                            |
| 11    | Br | $p-NO_2$             | 3k                   | 21                            |

 Table 1
 Reactions of N, N-diallylbenzoylamine with benzyl halides

- a. The structures of all compounds were confirmed by <sup>1</sup>HNMR, MS, IR and elemental analysis.
- b. b. Isolated yields.

## Acknowledgment

Project (20072015) supported by the National Natural Science Foundation of China. The research funds for Y. Pan from Qin-Lan Program of Jiangsu Province, Kua-Shi-Ji Program of Education Ministry and the National 863 High Technology Program are also acknowledged.

## References

- 1. J. Tsuji, *Palladium Reagents and Catalysis, Innovations in Organic Synthesis*, Wiley, New York, **1995**.
- 2. E. Negish, C. Coperet, S. Ma, S. Y. Liou, F. Liu, Chem. Rev., 1996, 96, 365.
- 3. A. D. Meijere, F. E. Meyer, Angew. Chem. Int. Ed. Engl., 1994, 33, 2379.
- 4. Y. Pan, Z. Y. Zhang, H. W. Hu, Synthesis, 1995, 245.
- 5. L. S. Wang, Y. Pan, X. Jiang, H. W. Hu, Tetrahedron Lett., 2001, 41, 725.

Received 2 September, 2002